metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

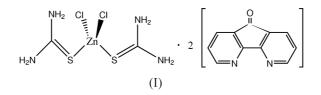
Zhi-Yong Wu,^a Duan-Jun Xu^a* and Kai-Liang Yin^b

^aDepartment of Chemistry, Zhejiang University, People's Republic of China, and ^bKey Laboratory of Fine Chemical Engineering, Jiangsu Polytechnic University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.033 wR factor = 0.103 Data-to-parameter ratio = 15.7


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

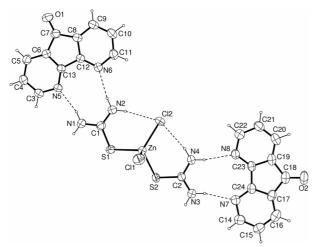
Dichlorobis(thiourea)zinc(II) bis(4,5-diazafluoren-9-one)

The title compound, $[ZnCl_2(CH_4N_2S)_2] \cdot 2C_{11}H_6N_2O$, consists of the tetrahedral ZnCl₂-thiourea complex and hydrogenbonded 4,5-diazafluoren-9-one (dafone). The $N \cdots N$ distance in dafone when not involved in metal coordination is significantly larger than when it is metal chelating. Neighboring zinc(II) complex molecules hydrogen bond to each other, forming supramolecular chains. π - π stacking is observed between neighboring dafone rings.

Comment

4,5-Diazafluoren-9-one (dafone) is structurally similar to phenanthroline and plays the role of chelating ligand in some metal complexes (Xiong et al., 1996; Shi et al., 1994); however, in most cases, X-ray structure determination showed that dafone does not coordinate to first-row transition metal ions (Ravikumar & Lakshmi, 1994; Wu, Xu, Wu & Chiang, 2002). The structure of the title compound, (I), is presented here to enable comparison of the structure of dafone with the structures of dafone-chelating complexes reported previously.

The structure of (I) is shown in Fig. 1. The crystal consists of the zinc(II) complex and uncoordinated dafone in a 1:2 ratio. The Zn complex has a distorted tetrahedral coordination geometry, formed by two thiourea molecules and two Clanions, coordination bond angles at the Zn^{II} atom ranging from 98.40 (3) to 114.11 (3) $^{\circ}$ (Table 1). The amine groups are intramolecularly hydrogen bonded to atom Cl2 (Table 2). Dafone is linked to the zinc complex via hydrogen bonding; this structure agrees with the situation found in the Co^{II} analogue (Wu, Xu & Yin, 2002) and in bis(thiourea)chlorocopper(I) di(4,5-diazafluoren-9-one) (Wu, Xu, Wu & Chiang, 2002). These structures imply that the thiourea S atom is the preferred metal-coordinating ligand in the presence of dafone.


The two independent dafone molecules have a similar planar structure. The N5···N6 [3.064 (3) Å] and N7···N8 [3.065 (3) Å] distances are not significantly different from the values of 3.068 (3) and 3.064 (3) Å found in the Co^{II} analog, and 3.055 (2) Å found in the crystal structure of dafone itself (Fun et al., 1995), but are much longer than the N···N distances (2.880 and 2.841 Å) found in a Co complex and a Ni complex, both with a chelating dafone ligand (Xiong et al., 1996; Shi et al., 1994). The C12–C13 [1.481 (3) Å] and C23–

DOI: 10.1107/S1600536804006403

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Wu, Xu and Yin • $[ZnCl_2(CH_4N_2S)_2] \cdot 2C_{11}H_6N_2O$

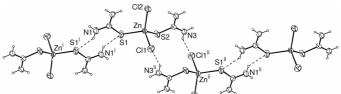
Received 4 March 2004 Accepted 18 March 2004 Online 31 March 2004

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

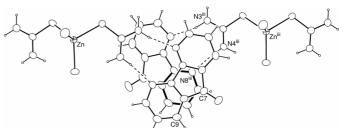
C24 [1.475 (4) Å] bonds are also significantly longer than the values of 1.457 and 1.441 Å found in Co and Ni complexes with chelating dafone.

Neighboring Zn^{II} complex molecules are linked to each other via hydrogen bonding between amine groups and Cl atoms, and between amine groups and S atoms, forming a supramolecular chain (Fig. 2) along the $[1\overline{10}]$ direction.


The C7-ring and C9-ring of dafone are partially overlapped with the N8ⁱⁱⁱ-ring of a neighboring dafone [symmetry code: (iii) -1 + x, 1 + y, z; Fig. 3], which suggests $\pi - \pi$ stacking between the dafone rings. The π - π stacking interactions involving the nearly parallel dafone rings can be better defined by the ring-centroid separation (DC), the interplanar average spacing (DP), the centroid shifts (SH) and the interplanar dihedral angle (DA). The numerical values of these parameters are DC = 3.526 (4) Å, DP = 2.91 (2) Å, SH = 1.99 (3) Å and DA = $3.33 (11)^{\circ}$ for the C7- and N8ⁱⁱⁱ-rings, and DC = 3.668(4) Å, DP = 2.86(2) Å, SH = 2.30(2) Å and DA = $3.47 (10)^{\circ}$ for the C9- and N8ⁱⁱⁱ-rings.

Experimental

Dafone was prepared according to a previously reported method (Henderson et al., 1984). ZnCl₂ (34 mg, 0.25 mmol), thiourea (38 mg, 0.5 mmol) and dafone (91 mg, 0.5 mmol) were dissolved in acetone (15 ml). The solution was refluxed for 2 h and filtered after cooling to room temperature. Yellow single crystals were obtained after 5 d. Analysis calculated for C₂₄H₂₀Cl₂N₈O₂S₂Zn: C 44.15, H 3.09, N 17.16%; found: C 43.6, H 3.09, N 16.65%.


Crystal data

$[ZnCl_2(CH_4N_2S)_2]\cdot 2C_{11}H_6N_2O$	Z = 2
$M_r = 652.86$	$D_x = 1.542 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.4059 (17) Å	Cell parameters from 20
b = 12.973 (2) Å	reflections
c = 15.184 (3) Å	$\theta = 4.5 - 8.1^{\circ}$
$\alpha = 89.167 \ (17)^{\circ}$	$\mu = 1.25 \text{ mm}^{-1}$
$\beta = 78.006 \ (16)^{\circ}$	T = 295 (2) K
$\gamma = 80.220 \ (16)^{\circ}$	Prism, colorless
$V = 1405.9 (5) \text{ Å}^3$	$0.52 \times 0.44 \times 0.18 \text{ mm}$

Figure 2

The hydrogen-bond linkage among Zn^{II} complex molecules. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z.]

Figure 3

The partially overlapped arrangement of neighboring dafone rings. [Symmetry code: (iii) -1 + x, 1 + y, z.]

Data collection

Rigaku AFC-7 <i>S</i> diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.535$, $T_{max} = 0.802$ 5774 measured reflections 5520 independent reflections 4070 reflections with $I > 2\sigma(I)$	$R_{int} = 0.050$ $\theta_{max} = 26.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -15 \rightarrow 0$ $l = -18 \rightarrow 18$ 3 standard reflections every 150 reflections intensity decay: 0.6%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.103$ S = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0568P)^{2} + 0.4107P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{\text{max}} = 0.001$

5520 reflections 352 parameters

H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Zn-Cl1	2.2475 (10)	Zn-S2	2.3403 (9)
Zn-Cl2	2.2685 (9)	Zn-S1	2.3619 (10)
Cl1-Zn-Cl2	111.46 (4)	Cl1-Zn-S1	111.10 (4)
Cl1-Zn-S2	107.84 (4)	Cl2-Zn-S1	113.19 (4)
Cl2-Zn-S2	114.11 (3)	S2-Zn-S1	98.40 (3)

 $\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots N5$	0.88	2.03	2.888 (3)	167
$N1 - H1B \cdot \cdot \cdot S1^{i}$	0.94	2.83	3.606 (3)	141
$N2-H2A\cdots N6$	0.89	2.11	2.997 (3)	172
$N2-H2B\cdots Cl2$	0.93	2.40	3.324 (2)	172
$N3-H3A\cdots N7$	0.96	1.99	2.939 (3)	167
N3−H3B···Cl1 ⁱⁱ	0.94	2.67	3.481 (3)	145
$N4-H4A\cdots N8$	0.92	2.04	2.953 (3)	173
N4-H4 B ···Cl2	0.92	2.46	3.344 (2)	163

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, -y, 1 - z.

H atoms of amine groups were located in a difference Fourier map and included in structure-factor calculation with fixed positional (N– H = 0.877–0.961 Å) and displacement parameters (0.08 Å²); all other H atoms were placed in calculated positions, with C–H = 0.93 Å, and included in the final cycles of refinement in the riding mode, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$ (carrier atom).

Data collection: *MSC/AFC Diffractometer Control Software*. (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *teXsan* (Molecular Structure Corporation, 1985); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (29973036)

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H. K., Sivakumar, K., Zhu, D. R. & You, X. Z. (1995). Acta Cryst. C51, 2076–2078.
- Henderson, L. J. Jr, Fronczek, F. R. & Cherry, W. R. (1984). *J. Am. Chem. Soc.* **106**, 5876–5879.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 5.32. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1985). *teXsan*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ravikumar, K. & Lakshmi, N. V. (1994). Z. Kristallogr. 209, 56-57.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shi, X.-H., You, X.-Z., Li, C., Xiong, R.-G. & Yu, K.-B. (1994). Transition Met. Chem. 20, 191–194.
- Wu, Z.-Y., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. C58, m374– m376.
- Wu, Z.-Y., Xu, D.-J. & Yin, K.-L. (2002). Acta Cryst. E58, m260-m261.
- Xiong, R.-G., Zuo, J.-L., Xu, E.-J., You, X.-Z. & Huang, X.-Y. (1996). Acta Cryst. C52, 521–523.